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a b s t r a c t

The potential of multispectral imaging of autofluorescence to map sensory flavour properties and
fluorophore concentrations in cod caviar paste has been investigated. Cod caviar paste was used as a case
product and it was stored over time, under different headspace gas composition and light exposure
conditions, to obtain a relevant span in lipid oxidation and sensory properties. Samples were divided in
two sets, calibration and test sets, with 16 and 7 samples, respectively. A third set of samples was
prepared with induced gradients in lipid oxidation and sensory properties by light exposure of certain
parts of the sample surface. Front-face fluorescence emission images were obtained for excitation
wavelength 382 nm at 11 different channels ranging from 400 to 700 nm. The analysis of the obtained
sets of images was divided in two parts: First, in an effort to compress and extract relevant information,
multivariate curve resolution was applied on the calibration set and three spectral components and their
relative concentrations in each sample were obtained. The obtained profiles were employed to estimate
the concentrations of each component in the images of the heterogeneous samples, giving chemical
images of the distribution of fluorescent oxidation products, protoporphyrin IX and photoprotopor-
phyrin. Second, regression models for sensory attributes related to lipid oxidation were constructed
based on the spectra of homogeneous samples from the calibration set. These models were successfully
validated with the test set. The models were then applied for pixel-wise estimation of sensory flavours in
the heterogeneous images, giving rise to sensory images. As far as we know this is the first time that
sensory images of odour and flavour are obtained based on multispectral imaging.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Oxidation of foods is a major cause for limited shelf life. Studies
of how oxidation and oxidation processes are affected by packa-
ging, storage conditions and storage time are therefore important
to optimise these conditions. Valuable studies depend on relevant
and reliable measurement techniques for the quantification of
lipid and protein oxidation. A set of methods are established for
such, based on chromatography and wet chemistry, however, most
of them are destructive, time consuming and not necessarily
optimised for complex foods. Sensory analysis is a highly relevant
method and in many cases more sensitive than instrumental
methods. A drawback is the high cost of a well-trained sensory
panel, as well as a rather low capacity with respect to the number
of samples that can be analysed per day. A third limitation is the
resolution in sample size, there is a limit for how small samples a
panel can analyse, which makes it difficult to study for instance

the spatial development of an oxidation process. Gradients of
photo-oxidation in cheese have been recorded by a sensory panel
[1], but this is costly and impractical.

Thus, analytical methodologies able to detect early stages of
protein and lipid oxidation in complex food matrices are highly
needed, with particular interest in those, which are rapid and non-
destructive. In this regard, front-face fluorescence spectroscopy is
a potentially attractive technique. Fluorescence spectroscopy is an
instrumental technique which has been extensively exploited for
studies of molecular structure and function in the discipline of
chemistry and biochemistry [2]. Fluorescence measurement can be
performed by using either classical right-angle solution fluores-
cence or front face fluorescence spectroscopy. In classical fluores-
cence, for sample absorbance lower than 0.05, measurements are
performed on solutions, where the intensity of the emitted light is
proportional to the florophore concentration [3]. When the absor-
bance of the sample exceeds 0.05, fluorescence is quenched and
spectra are distorted. It is standard practice to dilute the original
sample until obtaining an absorbance less than 0.05, nevertheless,
results obtained on diluted samples are not always comparable to
those obtained with an original sample. To overcome this problem
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and examine intact samples directly, the front-face technique is
more appropriate. The technique was originally developed in 1968
[4]. Front-face fluorescence allows measurement of the fluores-
cence of powdered, turbid, and concentrated samples, as well as
complex food matrices such as meat, fish and dairy products [5].
In front-face fluorescence spectroscopy, the surface of a sample
is simply illuminated by excitation light, and the emitted fluores-
cence from the same surface is measured, which minimises
reflected light, scattered radiation and depolarisation phenomena.

It has been shown that front-face fluorescence can be used as a
method for rapid and non-destructive screening of oxidation in a
range of products, such as poultry [6], salmon patè [7], and cheese
[8]. Some tertiary oxidation products are fluorescent and enable
detection of oxidation in some products with the same sensitivity
as e.g. gas chromatography and sensory analysis [7]. In the case of
photooxidation, front face fluorescence has the interesting ability
to measure simultaneously the photobleaching of active photo-
sensitizers and the formed oxidation products. This has been
shown for e.g. butter [9], cheese [10] and cod caviar paste [11].
The use of chemometrics is usually required for interpretation
and quantitative modelling of the spectra collected from such
untreated systems.

Spectral imaging is an interdisciplinary field comprising image
analysis, spectroscopy and chemistry. Spectral imaging is divided
into two main techniques: hyperspectral imaging and multispec-
tral imaging. The hyperspectral technique acquires images at
numerous (hundreds) continuous wavebands, while the multi-
spectral technique acquires images only at few (normally around
10 or less) discrete wavebands. Or in other words, the hyperspec-
tral technique consists of more finely divided spectral channels
than the multispectral one. Thus, a quite high-resolution spectrum
can be extracted at each pixel from hyperspectral images, while
multispectral images produce a set of isolated data points at each
pixel. Hyperspectral data offers more detailed information about a
sample object, since it collects images with high spatial and
spectral resolution. Nevertheless, it is not very practical to imple-
ment the hyperspectral technique for rapid methods development
or on-line systems because of the long time required for image
acquisition and the big volume of generated data. It is common
practice to run hyperspectral imaging studies as a precursor for
establishing consistent multispectral imaging methods using a few
optimum wavebands for real-time applications.

Multispectral imaging is well known from remote sensing of
earth by satellite imagery [12], medical diagnosis [13] and material
science [14]. The methodology is typically used for detection of
certain features, e.g. such as contamination [15], detailed char-
acterisation of e.g tissue [16,17] or for effective sampling of
heterogeneous samples [18]. One challenge with imaging techni-
ques, both multispectral and hyperspectral, compared to regular
spectroscopy, is how to calibrate a system to produce quantitative
results at pixel level. Multivariate curve resolution (MCR) can be
directly applied on images with the aim of decomposing the mixed
spectra into pure spectral components as well as the correspond-
ing relative concentrations of each component. This technique has
been demonstrated to work well even for hyperspectral images
based on front face fluorescence spectroscopy on e.g. lung epithe-
lial cells [19], quantum dots in aqueous solutions [19], and mRNAs
in brain tissue [20]. Vermaas et al. [21] successfully employed MCR
on hyperspectral confocal fluorescence images to obtain new
structural information regarding the distribution and relative
concentration of photosynthetic pigments in cyanobacteria. Actu-
ally, they in vivo localised photosynthesis related pigments (chlor-
ophylls, phycobilins, and carotenoids) in wild-type and mutant
cells of the cyanobacterium Synechocystis sp. PCC 6803. In the
microarray technology field, Haaland et al. [22] demonstrated the
applicability of MCR using data from a hyperspectral fluorescence

imaging microarray scanner for monitoring gene expression in
cells from thousands of genes on the array. Another modelling
approach consists on establishing a multivariate regression that
can be used to predict the concentrations of interest in every
single pixel in the image. Such a model can be obtained on
homogeneous samples with known chemical composition, and
then be applied on images of heterogeneous samples. This
approach has been reported to work well for on-line NIR systems
estimating fat content in meat trimmings [23] and food content in
crabs [24].

The objective of this article is to demonstrate how multi-
spectral imaging based on front face fluorescence can be used
for detailed studies of oxidation and photooxidation processes in
cod caviar paste. In particular it is shown that it is possible to make
images of the spatial distribution of sensory properties related to
oxidation, which to our knowledge has not been done before. Cod
caviar paste was used as a case product and it was stored over time
to obtain a relevant span in lipid oxidation and sensory properties.
A sensory panel was used to assess the sensory properties of a
calibration and a test set based on homogeneous samples. Spectral
images of these homogeneous samples were obtained and multi-
variate models based on both MCR and partial least squares
regression (PLSR) were constructed and tested. These models were
then applied on images of heterogeneous samples with gradients
in oxidation and chemical properties.

2. Materials and methods

2.1. Materials

Twenty Kg of cod caviar paste were provided as a homoge-
neous batch from Mills (Mills DA, Oslo, Norway). It was packaged
under vacuum and stored in the dark at 4 1C.

For the experiment, 250 g aliquots of caviar paste were placed
in 195�132�25 mm3 thermoformed trays (Jihå Plast AB, Karls-
koga, Sweden) made of A-PET/PE sheet (Wipak Oy, Nastola,
Finland). The trays were sealed with a laminate film based on
oriented polyester, Biaxer 65 XX HFP AF (Wipak Oy, Nastola,
Finland; O2 transmission rate of 5 cm3/24 h at 23 1C, 50% relative
humidity) with a 511VG tray-sealing machine (Polimoon, Kristian-
sand, Norway). The gas in all the packages was N2 with traces of O2

(0.0370.03%). Once the samples were packed, small holes were
opened in the film, to let air in, for the samples to be stored in the
presence of 21% O2. For the preparation of samples to be stored
with 1% O2 in the headspace, air was injected through a septum
with a syringe upto the target O2 concentration. Measurements of
the concentration of O2 in the headspace were made with an
O2/CO2 analyser (CheckMate 9900 O2/CO2, PBI-Dansensor A/S,
Denmark). All trays were wrapped in one layer of transparent
plastic film (Clingfilm, Toro, Norway) to avoid the loss of humidity.

2.2. Experimental design

An experimental design including storage time, light exposure,
and O2 headspace-concentration was created in order to obtain a
large but relevant span in quality properties of cod caviar paste.
Three different atmospheres were employed for the storage of the
samples (anaerobic conditions with 100% N2, 1% O2, and 21% O2).
Some samples were exposed to light, while others were stored
in the dark. The storage design and conditions for the calibration
and test sets of samples are summarised in Table 1. A code was
assigned to each sample, indicating the days of storage, the
presence (L) or absence (D) of light exposure during storage, and
the concentration of O2 in the headspace (Table 1). The codes
employed in this table will be further used to identify the samples
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throughout the article. The two trays containing 250 g of cod
caviar paste and a third one containing two sample cuvettes filled
up with cod caviar paste were stored under each condition
detailed in Table 1. The caviar paste in the trays was used for
sensory evaluation and TBARS, while caviar paste in the cuvettes
was used for multispectral imaging of autofluorescence. Thus, the
calibration and test sets were made up by 32 and 14 trays of caviar
paste and 32 and 14 cuvettes, respectively. The test set was
generated and measured 6 weeks after the calibration set, with
the objective of validating the performance of the model.

A third set of samples were prepared directly in cuvettes. The
sample surface of these was covered with rounded pieces (55-mm
diameter) of 1-mm thick black cardboard with different patterns
cut in them for light transmission. The different patterns simulated
possible holes or faults in the caviar paste container. This would
ensure light exposure of some parts of the samples and not of
others. The cuvettes were placed inside metallic rings whose
profile was slightly higher than those of the cuvettes, and the
cardboard pieces were fixed on those rings with adhesive tape, to
avoid contact with the sample surface. The whole set was wrapped
in one layer of transparent film (Clingfilm, Toro, Norway) to avoid
loss of humidity. The same patterns were assayed for short and
long term exposures of 20 h and 14 days, respectively. A total of six
different patterns were assayed, both under short and long term
exposure conditions.

The light exposure was performed in a cold-storage chamber at
4 1C with fluorescent light tubes (Osram L 58W/954 Lumilux de
Luxe-Daylight) placed vertically at a distance of approximately
9 cm from the trays. Trays were randomly moved during the
exposure period, in order to assess an equal illumination for all
of them.

2.3. Sensory analysis

Sensory analysis is a scientific discipline that applies principles
of experimental design and statistical analysis to the use of human
senses (sight, smell, taste, touch, and hearing) for the purposes of
evaluating consumer products. The discipline requires panels of
human assessors, on whom the products are tested, and recording
the responses made by them.

The sensory evaluation was performed by a trained sensory
panel at Nofima AS using descriptive sensory profiling according to
Lawless and Heymann [25] and ISO standards [26]. The sensory
panel consisted of ten selected and independent assessors [27] and
took place in a purpose built sensory laboratory [28]. Prior to the
analysis, the panel was trained in the definition and intensities of
the chosen attributes, using caviar paste with varying sensory
properties (samples 1D0 and 21L21 for the calibration set and
a fresh sample, non-exposed and packed under vacuum, and
T-15L21 for the test set). The assessed sensory attributes (in the
same order as they were evaluated by the assessors) were:

fresh and rancid odours and fresh, bitter, metallic, fish oil and
rancid flavours. Those attributes have been previously described
by us and successfully applied to characterise cod caviar paste
from the sensory point of view [11].

Before evaluation, the samples in the trays were homogenised
by stirring with a spoon. Then each assessor was served a teaspoon
of caviar paste sample each on a cardboard plate at room
temperature. Each sample was served twice and the serving order
was randomized according to sample and assessor. Water and
cucumber dices were provided to cleanse the palate between
samples. A continuous non-structured scale was used for evalua-
tion of sensory attributes. Each judge evaluated the samples at
individual speed on a computer system for direct recording of data
(Compusense five, v. 4.6; Compusense, Inc., Guelph, ON, Canada),
and their scores were transformed to numbers from 1 (¼no
intensity) to 9 (¼high intensity). The sensory score for each
sample of caviar paste was obtained by averaging the individual
scores from the 10 assessors for each of the 10 subsamples. A total
of 64 samples were evaluated in the calibration set, and
the measurements had to be carried out over 2 days due to
capacity limitation; 28 samples were evaluated in the test set,
6 weeks later.

2.4. Thiobarbituric acid reactive substances (TBARS)

The 2-thiobarbituric acid reactive substances (TBARS) assay
was performed by a method slightly modified from the previously
proposed by Buege and Aust in 1978 [29]. Duplicate samples of
caviar paste (0.10 g) were mixed with 3.0 mL aliquots of a stock
solution containing 0.375% of 2-thiobarbituric acid (TBA) (Sigma
Chemical Co., St. Louis, MO), 15% trichloroacetic acid (TCA) (Merck
KGaA,Germany), and 0.25 N HCl. The mixture was vortexed and
then heated for 10 min in a boiling water bath (100 1C) until
development of a brownish colour. Later, it was cooled under tap
water and centrifuged at 5500 rpm for 25 min. A 0.50 mL aliquot
of the supernatant was transferred into the measurement cell and
further diluted with 2.50 mL of ultrapure water. The absorbance of
the resulting solution was measured at 532 nm (Ultraspec 3000,
Pharmacia Biotech, Cambridge, U.K.), against a blank which con-
tained all the reagents, except the caviar paste, treated exactly in
the same way as described above. The absorbance measurements
were normalised dividing them by the exact weight of cod caviar
paste taken in each case. The normalised A532 nm values, further
referred to as the TBARS index, were employed to look for
correlations with fluorescence data.

2.5. Multispectral imaging of autofluorescence

Samples were placed into sample cuvettes, which exposed a
flat circular surface (19.6 cm2) with a diameter of 5 cm for the
measurements. Images were acquired with an optical bench

Table 1
Assayed storage conditions and sample coding for the calibration and test sets.

Storage time (days) Calibration set Test set

Light Dark Light Dark

0% O2 (100% N2) 1% O2 21% O2 0% O2 (100% N2) 21% O2 0% O2 (100% N2) 1% O2 21% O2

1 1L0 1L21 1D0 1D21
4 4L0 4L1 4L21 4D21 T-4L21
8 T-8L0 T-8L1 T-8L21
10 T-10L1 T-10L21
12 12L0 12L1 12L21 12D21
15 T-15L21
21 21L0 21L21 21D0 21D21

D. Airado-Rodríguez et al. / Talanta 122 (2014) 70–7972



system previously described in detail by Wold et al. [30] and Wold
and Kvaal [31] in a laboratory with a minimum of stray light. The
excitation light was generated by a 300 W xenon arc lamp and a
10 nm bandwidth interference filter. The light was directed onto
samples at an angle of about 451 and the lamp distance was
adjusted to obtain a homogeneous illumination of the whole
sample surface as possible. The camera was CCD cooled to
�40 1C. An imaging spectrograph and a Nikon 102 mm photo-
graphic lens were connected to the CCD. Exposure time was 10 s
for each image channel. Spectrograph, detector and camera were
controlled by the software WinSpec 1.4.3.4.

In a previous work on fluorescence spectroscopy and cod caviar
paste [11] we showed that the excitation wavelength of 382 nm is
suitable to detect the generation of oxidation products which
fluoresce in a broad band around 470 nm, as well as to monitor
the bleaching of protoporphyrin IX (PpIX) (em¼635 nm and
705 nm) and the formation and further bleaching of its main
photoproduct photoprotoporphyrin (PPp) (em¼670 nm). Thus, the
excitation wavelength for this multispectral imaging experiment was
common for all the channels and set to 382 nm (Table 2). The
selection of emission-filters, detailed in Table 2, was based on our
previous knowledge about the fluorescent behaviour of cod caviar
paste system [11]. The autofluorescence emission spectra registered
for a fresh cod caviar paste sample (1D0) and samples packaged in air
and exposed to light for 1 (1L21) and 21 days (21L21) are shown in
Fig. 1. In the spectrum of the fresh sample, two sharp peaks
corresponding to PpIX at 635 and 705 nm are observed. After one
day of exposure to light (sample 1L21) a decrease in the intensity of
these peaks is observed and the appearance of a new peak centred at
670 nm, corresponding to PPp. [11] The spectra of both samples, 1D0
and 1L21, are quite similar for wavelengths below 600 nm. On the

other hand, the emission spectrum of a sample exposed to light for
21 days (21L21) is characterised by the total bleaching of PpIX and
PPp, and a broad emission band peaking around 470 nm is observed.
This broad band arises from different stable fluorescent oxidation
products [11]. Those three spectra represent the span of fluorescent
properties of cod caviar paste under the given experimental design.
Vertical lines in Fig. 1 represent the central wavelength of the
selected emission-filters and the shaded areas around them repre-
sent their bandwidth (10 or 40 nm). A total of 11 filters along the
whole wavelength region of interest were selected and strategically
placed at wavelengths where important changes in the emission
profiles take place, in order to collect as much chemical information
as possible. Thus, autofluorescence images for a total of 32 and
14 cuvettes integrating calibration and test sets, respectively, and
12 cuvettes corresponding to the six assayed patterns submitted to
short and long term light exposure, were obtained at every single
emission wavelength.

2.6. Image pre-Processing

Images of calibration and test samples were median-filtered
through a 3-by-3 window to remove possible spikes and black
points from “dead” pixels in the CCD. The illumination of the
samples surface was not homogeneous over the whole surface and
a slight illumination gradient was detected. A reference sample of
white paper was imaged in the 11th image channel (ex¼382 nm;
em¼700 nm), under the same conditions, to be used to compen-
sate for this inhomogeneity. The reference image was also median-
filtered and normalised to a maximum pixel value of 1. Each
channel in the multispectral image was corrected by dividing it
pixel by pixel by the reference image. The same reference image
was used to correct all the channels of the multispectral images,
the calibration and test sets as well as the images of the hetero-
geneous samples. Central rectangular areas of 130 pixels
�156 pixels (3.4 cm�4.1 cm, 14.2 cm2) were selected from cali-
bration and test images, and further resized to 10 pixels �10 pix-
els by binning for reasons of simplicity and to speed up the

Table 2
Filters and settings used for image acquisition

Channel Excitation
wavelength (nm)

Emission
wavelength (nm)

Bandwidth (nm)

1 382 450 40
2 382 460 10
3 382 480 10
4 382 500 40
5 382 510 10
6 382 530 10
7 382 550 40
8 382 600 40
9 382 640 10
10 382 670 10
11 382 700 40
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Fig. 1. Fluorescence emission spectra (λex¼382 nm) corresponding to a fresh cod
caviar paste sample (1D0: ) and two samples packaged in air and exposed to
light for 1 (1L21: ) and 21 days (21L21: ). The emission band
corresponding to oxidation products and the peaks for protoporphyrin IX (PpIX)
and photoprotoporphyrin (PPp) have been labelled. Vertical lines are placed at the
emission wavelengths of the assayed channels and the shaded areas around them
represent the bandwidth of the filters (10 ( ) or 40 nm ( )).

Fig. 2. Distribution of samples in each slice of the calibration (a) and test
(b) 3D-arranges. r1 and r2 refers to replicates 1 and 2 of each sample.

D. Airado-Rodríguez et al. / Talanta 122 (2014) 70–79 73



calculations. The rectangular sub-sections extracted from the
samples of the calibration and test sets were joined in two
multispectral images, respectively, and organised as detailed in
Fig. 2. Thus, the dimensions of images for the calibration and test
sets were 40 pixels�80 pixels�11 wavelength channels and
20 pixels�70 pixels�11 wavelength channels, respectively.

Images of heterogeneous samples were median-filtered and
corrected with the reference image as detailed above; then the
central rectangular area of 130 pixels �156 pixels was extracted.
The dimension of the multispectral images obtained for each of
these samples was 130 pixels� 156 pixels�11 wavelength
channels.

2.7. Data analysis

The analysis of images was carried out in two stages. First, MCR
was used to estimate the main fluorescent components in the
system to obtain chemical images of the caviar. Second, multi-
variate regression models were constructed for sensory attributes
and TBARS, which could be used to create sensory images.

2.7.1. Multivariate curve resolution
MCR calculates spectral components that can be close to the

pure fluorescent components and their corresponding relative
concentrations in each sample. The algorithm and basis for MCR
is described in detail by Tauler [32] and Tauler et al. [33]. Here,
only a brief summary of the method is given. It is a usual
assumption in MCR that the experimental data follows a linear
model, which in matrix form can be written as

X ¼ CSTþE

Where X is the data matrix with dimensions (I� J), and C (I�N)
and S (J�N) are matrices containing estimated concentration and
spectra of pure chemical components, respectively. N is the
number of pure chemical components. E (I� J) is the matrix of
residuals not explained by the chemical species in C and S, and
which hopefully is close to the experimental error. The main goal
of curve resolution is the determination of the true C and S
matrices based on the analysis of matrix X.

Initial estimations of C or S, which can be available from
techniques based on the detection of the purest variables [34] or
from techniques based on evolving factor analysis [35], are
optimised solving the last equation iteratively by alternating least
squares optimisation [36]. At each iteration of the optimisation,
new estimation of the C and S matrices is obtained

CþXn ¼ CþCST ¼ ST

and

Xn ST
� �þ

¼ C ST
� �

ST
� �þ

¼ C

where the matrix Xn is the PCA reproduce data matrix for the
selected number of components, the matrix Cþ is the pseudoin-
verse of the matrix C, i.e. Cþ¼C(CTC)�1 and the matrix (ST)þ is the
pseudoinverse of the matrix ST. At each iterative cycle, the non-
negativity constraint was applied. The constrained iterative opti-
misation was carried out until convergence was achieved.

MCR has been successfully extended to the study of second order
three-way data matrices [32,37,38]. The commonly followed strategy
implies the analysis of unfolded column-wise data matrices. Thus,
in order to implement MCR on our three dimensional array of data,
the calibration image was unfolded from dimensions 40�80�11 to
3200�11, and on this two-dimensional array, MCR was applied. The
array of MCR estimated concentrations was then refolded to its
original image format, resulting in potential chemical images.

In the present work, first of all, the calibration dataset was
analysed

Xcal ¼ CcalScal
T þE

and Ccal and Scal were calculated. Then, the obtained spectral
profiles Scal, were employed to estimate the concentration of pure
chemical components in the unfolded test set image and on the
unfolded images of heterogeneous samples

Ctest ¼XtestScal Scal
TScal

� ��1

or

Chet ¼XhetScal Scal
TScal

� ��1
;

respectively.
MCR was performed in Matlab ver. 7.6.0 (R2008a) (The Math-

works Inc., Natick, MA) by use of the PLS_Toolbox (Eigenvector
Research Inc., Wenatchee, WA).

2.7.2. Multivariate regression
Multivariate regression models were constructed based on the

calibration image dataset (X) and the sensory assessed attributes
and TBARS (Y). The constructed models were validated on the test
set and further applied to predict pixel by pixel the sensory
attributes and TBARS on heterogeneous samples, which allowed
us to obtain sensory images.

Partial least-squares regression (PLSR) [39] was employed to
construct the calibration models between fluorescence data and
sensory and TBARS values. The optimal number of PLSR factors
of the calibration models was determined by segmented cross-
validation, leaving out the pixel spectra from two replicates
corresponding to the same storage conditions at the same time.
The validation method provided a predicted value ŷi(i¼(1,…,i,…
N)) which was compared with the reference value, yi (sensory or
TBARS). The multivariate prediction correlation coefficient (R) and
the prediction error, expressed as root mean square error of cross-
validation (RMSECV), were used as quality criteria to evaluate the
models. RMSECV is defined as

RMSECV¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

i ¼ 1
ðyi� ŷiÞ2

s
;

where i denotes the samples from 1 to N. RMSECV represents
the average uncertainty that can be expected when predicting
Y-values for new samples.

The constructed calibration models were used for the predic-
tion of reference values of sensory attributes and TBARS for the
test set samples. Model performance was reported as the root
mean square error of prediction (RMSEP), calculated exactly as
RMSECV (being ŷi a result of prediction and not cross-validation),
and the multivariate correlation coefficient (R). PLSR was per-
formed with the software The Unscrambler (v. 9.8, Camo AS, Oslo,
Norway).

The employed fluorescence spectra for the construction of
these models were the average spectra of each sample in the
calibration set. In the case of the regression for sensory attributes,
PLS2 regression was employed. PLS2 is a version of PLSR which
allows simultaneous modelling of several Y-variables (sensory
attributes in this case) taking advantage of possible correlations
or co-linearity between them [39]. PLS1 was used for the TBARS
model. For validation, the regression vectors were applied on the
average fluorescence spectrum of each of the test samples. The
regression vectors were then employed pixel-wise on heteroge-
neous images to obtain sensory images.
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3. Results and discussion

Band number nine (ex¼382 nm; em¼640 nm) of the multi-
spectral image of the calibration set is shown in Fig. 3(a).
Each squared area corresponds to one sample of the calibration
set, according to the sample organisation shown in Fig. 2. The
colour-bar represents the fluorescence intensity: the brighter a
given area is, the stronger the fluorescence is. Channel nine is close
to the emission peak of PpIX at 635 nm and that is why the
samples kept in the dark have high intensities in this channel. The
mean spectra obtained from images for replicate 1 of samples 1D0,
1L21 and 21L21 are also shown in Fig. 3(b). These are the same
samples as shown with high-resolution emission spectra in Fig. 1.
The spectral resolution in the image data is much lower and the
spectral shapes are not as clear as for the high-resolution ones,
shown in Fig. 1. The main distortion of the shape is due to the
different transmission properties of the emission filters at the
different channels. However, the same main spectral features can
be found: higher intensities at 640 and 700 nm for the fresh
sample, due to the higher concentration of PpIX; decrease of the
intensity at these two emission wavelengths and increase of the
intensity at 670 nm after one day of light exposure (sample 1L21),
as a consequence of the photo-conversion of PpIX to PPp. The
intensities at emission wavelengths below 600 nmwere similar for
samples 1D0 and 1L21; while the strongest emission of fluores-
cence between 450 and 600 nm was obtained for sample 21L21,
arising from stable fluorescent oxidation products. The spectra for
these samples express well the span in fluorescence properties in
the current design and will help in further interpretation of the
emission profiles for pure components calculated by MCR. It is
possible to correct the image spectra for the differences in filter
transmission properties, however, it would not have any other
interest beyond the purely aesthetic.

3.1. Multivariate curve resolution—chemical images

The multispectral calibration set was decomposed by MCR.
Three components were found to explain 98.7% of the spectral
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Fig. 4. Spectral emission profiles of the MCR-estimated pure components: compo-
nent number 1 ( ), component number 2 ( ), and component number
3 ( ).

Fig. 5. MCR-estimated relative concentrations for the fluorescent components 1,
2 and 3.
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Fig. 3. (a) Registered images for calibration samples in channel 9 (λex¼382 nm and
λem¼640 nm). (b) Mean spectra extracted from images of replicate one (r1) of
samples 1D0 ( ), 1L21 ( ), and 21L21 ( ).
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data. The obtained emission profiles for the components are
shown in Fig. 4. The shapes of the profiles are not very obvious,
nevertheless it is possible to make an assignment and compare
the estimated concentrations with expected concentrations in the
samples. PpIX, PPp and oxidation products were the expected
fluorescence components, [11] and as a result of the experimental
design the intensity of these components should vary quite diffe-
rently along sample sets.

Component one is characterised by low intensity at wave-
lengths longer than 600 nm and high intensities at 450, 500 and
550 nm. This suggests that it represents stable fluorescent oxida-
tion products. Component number two has the highest intensity at
600, 640 and 700 nm, so it likely to represent PpIX, which has
known emission peaks at 635 and 705 nm. Component number
three is quite similar to component two in the 400–600 nm region,
while it has a clear peak at 670 nm, which agrees with the spectral
profile of PPp. It is obvious from Fig. 4 that the aim in this study is
not to obtain very recognisable spectral components. The goal is
that they actually represent the chemical compounds and can be
used to estimate their concentrations. The assumed identification
of the components and estimated concentrations should agree
with the expected concentrations in the calibration set.

In Fig. 5 the calculated relative concentrations for each compo-
nent are plotted for the calibration set (sample organisation
shown in Fig. 2). Sample 21L21 had the highest relative concen-
tration for component one, followed by sample 12L21. Samples
stored in the dark and packed in anaerobium atmosphere (1D0
and 21D0) were characterised by the lowest concentration for this
component (darkest areas in the image). These observations
support the assignment of this component to fluorescent stable
oxidation products. The concentration of component one along
lowest sample row packed with air and stored in the dark
increases slightly with time (from left to right) due to autoxida-
tion. The concentration distribution for component 2 agrees with

what we could expect for PpIX. An apparent total bleaching of
PpIX was achieved after 21 days of exposure to light in the
presence of air (sample 21L21). The sample with the highest
concentration of PpIX was the fresher one: 1D0. Samples packed
in air and kept in the dark showed a slight progressive decrease of
the concentration of PpIX over time, suggesting that PpIX was
involved as an antioxidant in autoxidation processes. Antioxidant
effect of PpIX is also observed in anaerobium atmosphere: the
same decrease in PpIX is observed in the presence or absence of
oxygen in headspace: 21D0 and 21D21. Upper row shows samples
packed in anaerobium conditions and exposed to light from
1 to 21 days (left to right). A progressive bleaching of PpIX was
observed under these conditions. The third component was
assumed to represent PPp, the photoproduct of PpIX. The esti-
mated concentrations for this component support this assign-
ment: photoreactions do not take place in the dark and explain
why this component was absent for samples kept in the dark. For
the samples packed in the absence of oxygen and exposed to light
between 1 and 12 days, the concentration of PPp increased with
time, while the concentration of PpIX decreased. PPp is known to
be a photosensitizer itself, and after 21 days of storage under light
exposure, a slight decrease was observed in its concentration. Also,
connecting this image to the concentrations predicted for compo-
nent 1, higher concentrations of oxidation products were found for
this sample along the first row.

Based on spectral profiles and studies of concentrations, we
conclude that the three MCR components are good representa-
tions of oxidation products, PpIX and PPp. The obtained spectral
profiles were used to estimate relative concentrations of the
three components in the heterogeneous images. These “chemical
images” are shown in Fig. 6. As stated above, component 1 repre-
sents stable fluorescent oxidation products. These products are
mainly Schiff base structures resulting from the interaction of
unsaturated aldehydes with proteins or aminoacids [40–42]. The

Component 1 Component 2 Component 3 

Pattern 
Short term 
exposure  
(20 hours) 

Long term 
exposure  
(14 days) 

Short term 
exposure  
(20 hours) 

Long term 
exposure  
(14 days) 

Short term 
exposure  
(20 hours) 

Long term 
exposure  
(14 days) 

Fig. 6. Predicted concentrations for MCR-components 1, 2 and 3 in heterogeneous samples, according to the MCR-model constructed based on the calibration set.
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formation of these products, as it is reported for several systems in
general and cod caviar paste in particular [11] is not immediate
and it takes some time until the concentration of such products is
detectable. On the other hand, the photobleaching process of PpIX,
and the successive formation of PPp are chemical processes taking
place immediately at light exposure. This can be observed in the
variation of the concentrations of components 1, 2 and 3 after 20 h
of light exposure. Little or no increase was registered in the
concentration of component one as a consequence of light
exposure during 20 h. More clear is the decreased concentration
of component two and increased concentration of component 3 in
the exposed areas, representing PpIX photobleaching and PPp
formation, respectively. In the set of samples exposed to light for
14 days, the concentration of component one, oxidation products,
has increased, in particular in the light exposed areas. In the cases
“a” and “b” (Fig. 6) it can be seen that a slight overall increase in
oxidation had occurred, but not located to the small areas of light
exposure. The increase might be a combination of auto-oxidation
and photo-oxidation. Regarding component 2, a strong photo-
bleaching of PpIX can be observed in the exposed zones. In the
cases “a”, “b” and “d” the photobleached areas were larger than
the wholes of light exposure, and this can be ascribed to light
scattering in the product. Lastly, the concentration of component
three is high where samples were exposed through small holes,
since the intensity of radiation reaching the sample surface was
sufficient to transform PpIX to PPp. For larger exposed areas,
where the light had been more intense, it could be observed that
the photobleaching of the formed PPp had started to dominate.
Case “f” (Fig. 6) represents an interesting example with a bright
“donut”. PPp was first generated over a large area due to light
scattering. When there is little PpIX left, the photobleaching of PPp
will dominate, and this will be most pronounced in the centre
where light intensity is highest. Therefore, there is a dark central
area where PPp was degraded. The same effect can be observed in
case “d” along the exposed line, where the concentration of PPp
was higher around the exposed line than in the actual line.

The results show that multispectral imaging of autofluores-
cence can be used to image important chemical constituents
related to auto-oxidation and photo-oxidation in a complex matrix
like cod caviar paste. The images can be used to follow they
formation and degradation of these compounds and thereby the
give the opportunity to monitor such oxidation processes in time
and space. Similar fluorescent photosensitizers and stable fluor-
escent oxidation products as found in cod caviar paste has been
reported for other systems [9,10], thus the proposed methodology
could be used in those as well.

With MCR there will always be a challenge to obtain the correct
true spectral components. For front-face fluorescence data it has
been pointed out that reabsorption of fluorescence for e.g.

pigments will affect the calculated profiles and also obscure the
concentration estimates [43]. In the case of caviar, it has a pink-
orange colour which is slightly bleached after light exposure.
This bleaching could give a reduction of absorption in the blue
region (400–500 nm) and slightly affect the intensity and shape of
component 1. Components 2 and 3 would probably be unaffected
by reabsorption.

3.2. Regression analysis – sensory Images

Regression results are summarised in Table 3. Two factors were
selected as optimum for the PLS2 model for sensory attributes,
which explained 99.87% and 96.01% of the total variance in X and
Y-blocks, respectively. Fairly good multivariate correlation coeffi-
cients (R) were obtained when calibration models were cross-
validated, probably due to the reduced number of samples and the
low resolution in the employed calibration spectra. RMSECV
ranged between 0.32 and 1.1. Nevertheless, high R values, ranging
between 0.75 for bitter and metallic flavours and 0.91 for fresh
odour, were obtained when the obtained models were validated
by predicting sensory attributes of the test set. In the case of
TBARS, one component was enough to explain 98.84 and 99.79% of
the total variance in X and Y-blocks, respectively, and an R value of
0.9 was obtained both when the model was cross-validated and
validated on the test set. The regression models corroborate that
the low resolution image spectra successfully captured the spectral
information needed to model TBARS and the assessed sensory
attributes related to rancidity.

Care has to be taken when making conclusions based on
regression vectors in multivariate regression [44]. In this case a
logical interpretation related to the freshness and rancidity can be
done. Regression vectors for fresh odour and flavour were char-
acterised by high intensities for wavelengths longer than 600 nm
and low intensities for wavelengths shorter than 600 nm (not
shown). This matches the spectral features of a fresh sample. The
shape of the regression vectors for rancid odour and flavour were
more or less opposite, high values in the region 450–550 nm and
very low values over 600 nm.

When applying the regression vectors to the images of hetero-
geneous samples, sensory images were obtained (Fig. 7). They
show the distribution of fresh and rancid flavour after 20 h and 14
days in the same samples as shown in Fig. 6. Gradients in sensory
properties can be observed corresponding to the pattern of light
exposure. Within samples subjected to short term light exposure,
loss of freshness and an increase in rancidity was observed only
when the light exposed area was rather big, e.g. for case “e” or “f”.
For samples exposed through small holes or a narrow line (cases
“a”, “b” and “d”), no changes in sensory attributes were detected
after 20 h of exposure to light. This relates well to the images of

Table 3
Results from partial least squares regression (PLSR) for some sensory-assessed attributes of interest (PLS2; #Factors¼2) and TBARS (PLS1; #Factors¼1) vs fluorescence
(mean spectra).

Sensory attributes Calibration (N¼32) Prediction (N¼14)

R RMSECV Ycal range R RMSEP Ytest range

Odours Fresh odour 0.35 1.0 2.5–5.5 0.91 0.57 3.2–5.3
Rancid odour 0.62 0.74 1.0–3.7 0.86 0.47 1.1–3.0

Flavours Fresh flavour 0.56 1.1 1.8–5.6 0.89 0.75 2.8–5.6
Bitter flavour 0.78 0.32 4.6–6.1 0.75 0.31 4.6–5.6
Metallic flavour 0.69 0.35 4.1–5.3 0.75 0.26 4.2–5.2
Fish oil flavour 0.66 0.66 2.6–4.9 0.82 0.35 3.4–4.7
Rancid flavour 0.69 1.1 1.1–5.2 0.88 0.58 1.4–4.7

TBARS-index 0.90 0.035 0.68–1.0 0.91 0.058 0.75–0.88

R gives the correlation coefficient; RMSCV is the root mean square error of cross-validation; RMSEP is the root mean square error of prediction.
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MCR component 1 assigned to oxidation products (Fig. 6). These
products were formed to only a limited extent after 20 h.

After 14 days of storage, the distribution of sensory properties
reflects the patterns of light exposure quite well. A decrease in the
fresh flavour and an increase in rancid flavour are obtained in all
exposed areas, most easily seen when exposed areas were large.
For case “a” and “b” it can be seen a slight overall decrease of fresh
flavour, which can be ascribed to auto-oxidation. Some small
darker regions corresponding to the pinholes can also be dis-
cerned. These darker regions can be ascribed to photo-oxidation.
Images of TBARS were similar to those of rancid flavour and are
therefore not shown.

In this study we used the average spectra from each sample in
the calibration models. An alternative could be to include all single
pixel spectra in the model. Then some of the natural image noise
would have been included in the data, and more robust models
might have been obtained. In this study we observed that the two
approaches gave similar results. A discussion of such modelling
approaches can be found in Wold and Kvaal [31].

The sensory images in Fig. 7 and the chemical images in Fig. 6 are
of course very related. The chemical images show some of the
chemical processes that result in the sensory images, but they do all
carry different and specific information. It gives the interesting

opportunity to compare the chemical information with the sensory
information. The results also illustrates that curve resolution (MCR)
and regression have two different purposes. Successful MCR enables
imaging of specific chemical compounds, while regression in this case
could be used to map more complex quality features into the image
domain. The approach of making calibrations on homogeneous bulk
samples, and then applying these calibrations pixel by pixel to study
details in heterogeneous samples [23,24] is effective and can be
recommended for quantitative multispectral imaging of other complex
bio-systems. A well-defined calibration set is not needed for MCR.
MCR can be applied directly on images of heterogeneous samples,
however, a controlled sample set can be important in assisting the
interpretation and validation of the model.

The imaging system used in this study was very slow (long
exposure times) and of low spectral resolution. The main aim for
us, however, was to illustrate the potential of chemical and
sensory imaging based on spectral imaging of autofluorescence.
Much more efficient, high resolution and more accurate systems
are available, which enable faster and more detailed studies than
the present. Such systems can be calibrated against sensitive, but
slow and costly sensory panels, and then be used to capture
detailed chemical and sensory images of oxidation progress in
intact biomaterials.

Fresh flavor Rancid flavor 

Pattern 
Short term  

exposure (20 hours) 

Long term  

exposure (14 days) 

Short term  

exposure (20 hours) 

Long term  

exposure (14 days) 

Fig. 7. Predicted fresh and rancid flavours for heterogeneous samples exposed to light for 20 h or 14 days.
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4. Conclusions

It is demonstrated that multispectral imaging of autofluores-
cence in combination with multivariate curve resolution and
partial least squares regression, is a well-suited methodology to
map the concentration and distribution of fluorescent compounds
and sensory assessed attributes in cod caviar paste. As far as we
know this is the first time that sensory images of odours and
flavours are obtained based on multispectral imaging. The meth-
odology is a potent tool for investigation of the kinetics of auto-
oxidation and photo-oxidation in complex intact biomaterials.
The approach of making regression models based on homoge-
neous bulk samples, and then applying these calibrations pixel by
pixel to study details in heterogeneous samples is effective and
can be recommended for quantitative multispectral imaging of
other complex bio-systems, also at the microscopic level.
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